## **Cardiac Safety Assessment Service**

Cardiovascular Research Group Lankenau Institute for Medical Research LIMR Suite R230 100 East Lancaster Avenue Wynnewood, PA 19096 484-476-2688

### About Us

The Cardiovascular Research Group at Lankenau Institute for Medical Research provides drug development companies worldwide with the complete range of cardiac safety assessment services. Led by Professors Gan-Xin Yan, MD, PhD and Peter R. Kowey, MD, renowned cardiologists and electrophysiologists, our cardiac safety team consists of experienced cardiologists, research scientists, and technicians. Our Cardiovascular Research Group has become the international leader in cardiovascular safety pharmacology as well as academic research. We are committed to providing pharmaceutical and biotech companies with drug discovery and development screening services to speed the drug-development process.

Our Cardiovascular Research Group offers an integrated portfolio of cardiac safety assays from cell to organ levels. These assays include **the wedge preparation assay**, **a hERG potassium current analysis**,  $I_{Na}$  and  $I_{Ca}$  screening, a human cardiomyocyte ion channel assay, and an action potential assay. The unique ventricular wedge preparation first developed by Dr. Yan has been adopted by many pharmaceutical and biotech companies worldwide for cardiac safety assessment. At the QT conference sponsored by the British Cardiovascular Society in 2007, the rabbit LV wedge preparation was ranked as a better validated preclinical model (compared with other preclinical models including HERG assay and Langendorff model) by the participants from different pharmaceutical companies (Pugsley Hancox and Curtis: Perception of validity of clinical and preclinical methods for assessment of torsades de pointes liability. Pharmacol Ther 2008;119:115-117). Using the unique left ventricular wedge preparation technique, we have screened thousands of compounds for major pharmaceutical companies.

- Wedge Preparation Assay
- hERG Current Assay
- NaV 1.5 and Cav 1.2 Assay
- Human Cardiomyocyte Ion Channel Assay
- Human Cardiomyocyte Action Potential Assay

Price quotes: Please contact Professor Gan-Xin Yan, MD, PhD (484) 476-2687 (Office); (484) 476-2688 (Lab); 610-256-0999 (Cell); <u>YanGanxin@comcast.net</u> or <u>YanG@mlhs.org</u>

## 1. Wedge Preparation Assay

We have developed a new research method, an arterially perfused left ventricular wedge preparation, to access the EKG, AP, and/or muscle contractibility in intact left ventricular wall (see Figure 1). Using this unique ventricular wedge preparation, we are able to record the transmembrane action potentials, EKG and/or contractibility simultaneously in the hearts. The wedge preparation exhibits a number of advantages over other experimental models in accessing the cardiac rhythm and function, such as transmural dispersion of repolarization and cardiac arrhythmias. It has drawn attentions from cardiac safety experts worldwide and has become the powerful tool in the practice of cardiac safety evaluation.



**Figure 1.** Arterially perfused canine (left) and rabbit (right) left ventricular wedge preparations. The wedges were perfused with Tyrode's solution via a small native branch of left descending coronary artery and stimulated from the endocardial surface. Transmembrane action potentials can be simultaneously recorded from epicardial (Epi), M cells and endocardial (Endo) sites. A transmural ECG is recorded concurrently.



**Figure 2.** Sample of wedge preparation recording from a canine left ventricular preparation. Panels from top to bottom represent isotropic contraction force (ICF), membrane action potentials from the endocardium (Endo-AP) and epicardium (Epi-AP), and an ECG, respectively. QT Interval, QRS,  $T_{p-e}$  intervals were labeled. The stimulating cycle length was 2000 ms and the temperature was maintained at 35.7  $\pm$  0.3 °C.

| Parameters<br>Assessed | Clinical Safety Relevancies                                                                                                                                                                                                                                                                  |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| QRS                    | An index of $I_{Na}$ : An increase in QRS indicates $I_{Na}$ inhibition. Strong use-dependent QRS increase, like Class 1c drugs, is associated with ventricular tachycardia.{}{} The wedge preparation has higher sensitivity and specificity than other assays to detect $I_{Na}$ blockade. |
| QT                     | The rabbit LV wedge is sensitive to QT prolonging agent. The specificity is also very high.{}                                                                                                                                                                                                |
| APD                    | Similar to QT; action potential recording can be used to detect EAD.                                                                                                                                                                                                                         |
| T <sub>p-e</sub>       | $T_{p\text{-}e}$ is an index of transmural dispersion of repolarization. It is amplified by pure $I_{Kr}$ blockers and reduced by $I_{Na}$ or $I_{Ca}$ blockers                                                                                                                              |
| QT-BCL<br>Slope        | The QT-BCL slope is amplified by the QT prolonging agents particularly $I_{Kr}$ blockers and blunted by $I_{Na}$ blockers. Amplified QT-BCL slope is associated with a higher risk of TdP.                                                                                                   |
| EAD/TdP                | EAD/TdP can occur in the wedge in presence of strong QT prolonging agents.                                                                                                                                                                                                                   |
| VT/VF                  | VT/VF can be produced by $I_{Na}$ blockers with strong use-dependence, QT shortening                                                                                                                                                                                                         |

#### Parameters Assessed in the Wedge Preparation and Their Clinical Safety Relevancies

|                             | agents, drugs like digitalis and sympathetic stimulants.                                                                                                                                            |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TdP Score                   | The relative TdP risk of a compound can be hemi-quantitatively estimated based on its effect on QT, T <sub>p-e</sub> and incidence of EAD/TdP.{}                                                    |
| Contractility<br>(optional) | Marked reduction and loss of positive staircase phenomenon by a compound indicates ${\sf I}_{\sf Ca}$ blocker. The wedge is very sensitive and specific in detecting ${\sf I}_{\sf Ca}$ inhibition. |

## Summary of left ventricular wedge preparation assay

| Animal Species     | Guinea Pig, <u>Rabbit ( most common),</u> dog                             |  |
|--------------------|---------------------------------------------------------------------------|--|
| Technology         | Arterially-pefused Wedge Preparation                                      |  |
| Compound(s) Info.  | Molecular weight, solubility. Minimal 2 ml of up to 100 mM stock in DMSO. |  |
| Concentrations     | 4 concentrations, n=4.                                                    |  |
| Positive Control   | Yes, per client's request.                                                |  |
| Testing Conditions | 500,1000,2000 ms cycle lengths in 35.7 °C                                 |  |
| Reporting          | Protocol summary, concentration response curves and safety analysis.      |  |

## 2. Ion Channel Cell Expression Assay

#### hERG Potassium Channel Assay (Screening)

**hERG** (the human *Ether-à-go-go*-Related **G**ene) is a gene (KCNH2) that codes for a protein known as  $K_v 11.1$  <u>potassium ion channel</u>. The hERG channel mediates the repolarizing  $I_{Kr}$  current in the cardiac action potential and contributes to the electrical activity of the heart that coordinates the heart's beating. KCNH2 mutations cause inherited forms of cardiac disorders including both long QT (loss-of-function) and short QT (gain-of-function) syndromes. Inhibition of HERG channels by compounds/agents is the primary cause of acquired long QT syndrome and drug-induced torsade de pointes. It is estimated that 20-40 % of all lead compounds show level of hERG cardiac toxicity. Therefore, hERG channel is an important target in cardiac safety assessment.

Our laboratory provides manual patch clamp hERG assay. In this assay,  $IC_{50}$  of the testing compound on hERG channel will be determined.

| Ion Channel       | hERG                                                                   |
|-------------------|------------------------------------------------------------------------|
| Cell Line         | HEK 293/CHO                                                            |
| Technology        | Manual patch clamp                                                     |
| Sample size       | Minimal 100 μl of 100 mM stock in DMSO.                                |
| Compounds info    | Molecular weight, solubility                                           |
| Concentration     | 5 concentrations, n=4.                                                 |
| Positive control  | Yes, dofetilide or terfenadine                                         |
| Testing condition | 2-5 minutes of exposure in room temperature or 36 $^{\circ}\mathrm{C}$ |
| Reporting         | Protocol summary, concentration response curve and IC50 value.         |

• Sample --- Effects of Dofetilide on hERG currents



Figure 3. Effect of dofetilide on *hERG* currents. *A&B*: The superimposed currents response to step depolarizations ranging from -20 mV to + 60 mV from a holdingpotential of -50 mV were obtained under control condition (A) and after 4 min of superfusion with 10 nM of dofetilide (B). C: Concentrationresponse relationship of dofetilide on hERG current. Data were fitted with an equation I/Io = 1/( 1 + [C] / [IC50]).All data are expressed as Mean  $\pm$  SEM, n=4cells.

#### Other Expressed Ion Channel Assay

We can also provide service for other expressed ion channels assay, such as NaV1.5 ( subunit of fast voltage-dependent sodium channel) and Cav1.2 ( subunit of L-type voltage-dependent calcium channel.

| Ion Channel       | NaV1.5, CaV 1.2                                               |
|-------------------|---------------------------------------------------------------|
| Cell Line         | HEK 293/CHO                                                   |
| Technology        | Manual patch clamp                                            |
| Sample size       | Minimal 100 μl of 100 mM stock in DMSO.                       |
| Compounds info    | Molecular weight, solubility                                  |
| Concentration     | 5 concentrations, n=4.                                        |
| Positive control  | Yes, dofetilide or terfenadine                                |
| Testing condition | 2-5 minutes of exposure in room temperature or 36 °C          |
| Reporting         | Protocol summary, concentration response curve and IC50 value |

## 3. Native Cardiomyocyte Ion Channel Assay

#### • Available Cardiac Myocytes

| Cardiomyocyte                             | source                                                       |
|-------------------------------------------|--------------------------------------------------------------|
| Human (atrial or ventricular tissue)      | From patients during open-heart surgery or heart transplant. |
| Canine (atrial or ventricular tissue)     | From commercial vendors                                      |
| Rabbit (atrial or ventricular tissue)     | From commercial vendors                                      |
| Guinea Pig (atrial or ventricular tissue) | From commercial vendors                                      |
| Rat (atrial or ventricular tissue)        | From commercial vendors                                      |
| Mouse (atrial or ventricular tissue)      | From commercial vendor                                       |

#### • Available Cardiac Ion Channel Assays

In the heart, the concerted opening and closing of cardiac ion channel is responsible for the action potential formation and cardiac excitability. Inhibition of these ion channels can lead to antiarrhythmic or proarrhythmic. Therefore, the most direct and promising method of evaluating cardiac safety of a compound is to measure its effects on cardiac ion channel.

| Abbreviation                        | Name                                | Role          |
|-------------------------------------|-------------------------------------|---------------|
| I <sub>Na</sub>                     | Fast sodium current                 | phase 0       |
| l <sub>to</sub>                     | Transient outward potassium current | Phase 1       |
| I <sub>Ca-L</sub>                   | L-type calcium current              | Phase 2 and 3 |
| I <sub>Kr</sub> and I <sub>Ks</sub> | Rapid activa                        | Phase 2 and 3 |
| I <sub>Na-L</sub>                   | Slow sodium current                 | Phase 2 and 3 |
| l <sub>K1</sub>                     | Inward rectifier potassium current  | Phase 3 and 4 |

#### Available cardiac ion channel assays packages

| Whole Package<br>(Cardiac Profiler)  | $I_{Na}$ , $I_{to}$ , $I_{Kur}$ , $I_{Ca-L}$ , $I_{Na-L}$ , $I_{Ks}$ , $I_{Kr}$ , $I_{K1}$                                    |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Outward Current Package              | $I_{to}$ , $I_{Kur}$ , $I_{Ks}$ , $I_{Kr}$ , $I_{K1}$                                                                         |
| Inward Current Package               | I <sub>Na</sub> , I <sub>Ca-L</sub>                                                                                           |
| Individual Ion Channel<br>Evaluation | Channel biophysical properties, such as use-dependence properties studies in $I_{\text{Na}}$ and I $_{\text{Ca-L}}$ currents. |
| Technology                           | Manual patch clamp technique                                                                                                  |
| Protocol                             | Standard protocols for all current recording                                                                                  |
| Conditions                           | Physiological or Room Temperature                                                                                             |
| Turn-Around Time                     | 1-2 weeks from receipt to draft report for one testing compound (depending on assay type)                                     |

#### • Example 1 --- Effect of Compound X on fast sodium current (I<sub>Na</sub>)

#### in human atrial myocytes



Figure 4. Effect of Compound X on fast sodium current in human atrial myocytess. A&B: The superimposed currents response to step depolarizations ranging from - 70 mV to + 40 mV from a holding potential of - 100 mV were obtained under control condition (A) and after 4 min of superfusion with 1  $\mu$ M of Compound X (B). C: Effect of Compound X on the peak current-voltage relationships of I<sub>Na</sub> I-V curves before (open circles) and after ( solid circles) 4 min superfusion with 11  $\mu$ M of Compound Concentration-response Х. D: relationship of Compound X on sodium current. Data were fitted with an equation I/Io = 1/(1+[C]/[IC50]). All data are expressed as Mean ± SEM, n=4 cells.



#### Example 2 --- Effect of Compound Y on transient outward potassium current ( I<sub>to</sub>) current in human atrial myocytes

Figure 5. Effect of Compound Y on transient outward potassium current in human atrial myocytess. A&B: The superimposed currents response to step depolarizations ranging from -30mV to + 60 mV from a holding potential of - 50 mV were obtained under control condition (A) and after 4 min of superfusion with  $1 \mu M$  of Compound Y (B). C: Effect of Compound Y on the peak currentvoltage relationships of I<sub>to</sub> I-V curves before (open circles) and after (solid circles) 4 min superfusion with 1  $\mu M$ of Compound Y. D: Concentrationresponse relationship of Compound X on sodium current. Data were fitted equation I/Io = with an 1/( 1+[C]/[IC50]). All data are expressed as Mean  $\pm$  SEM. n=4 cells.

#### Example 3 --- Effect of Compound Z on L-type calcium current (I<sub>Ca-L</sub>) in rabbit ventricular myocytes



Figure 6. Effect of Compound Z on Ltype calcium current in rabbit ventricular myocytess. A: The superimposed currents response to step depolarizations from -80 mV to 0mV from a holding potential of - 100 mV were obtained under control condition and after 4 min of superfusion witn various concentrations of Compound Z. B: *Concentration-response* relationship of Compound Z on sodium current. Data were fitted with an equation I/Io = 1/(1+[C]/[IC50]). All data are expressed as Mean  $\pm$  SEM, n=4 cells.

## 4. Native Cardiomyocyte Action Potential Assay

## Available cardiac myocyte types and species

Action potentials are generated by the movement of ions through the transmembrane ion channels in the cardiac cells. Action potentials are dramatically different in morphology and duration on myocyte cell type and species.

| Animal Species         | Mouse, Guinea Pig, Rat, Rabbit, Dog                                                                       |  |
|------------------------|-----------------------------------------------------------------------------------------------------------|--|
| Human Tissue           | Human atrial and ventricular tissues (freshly isolated from open chest surgery or heart transplantation). |  |
| Myocyte Cell Type      | Atrial and ventricular myocytes                                                                           |  |
| Technology             | Standard Microelectrode Technique (Not using current clamping method)                                     |  |
| Conditions             | Physiological Temperature (36.5±0.5°C).                                                                   |  |
| Protocol               | Standard protocols                                                                                        |  |
| Parameters<br>Measured | APD <sub>20</sub> , APD <sub>90</sub> , V <sub>max</sub> , Resting Potential.<br>Use-dependence property. |  |
| Concentrations         | 4-5 concentrations, n=4.                                                                                  |  |
| Turn-Around Time       | 1-2 weeks from receipt to draft report for one testing compound (depending on assay type)                 |  |
| Note                   | Ask for discount if more than 5 testing compounds.                                                        |  |

• Example 1 --- Effect of Compound HBI-3000 on the action potentials in human ventricular myocytes



Figure 7. Effect of HBI-3000 on action potentials of human ventriculsr myocytess. A: Action potential traces recorded in mvocvte а isolated from human left ventricle at the basic cycle length of 2 s. HBI-3000 displays bimodal effect on action potentials. *B*: changes Percentage of APD90 in human ventricular data *myocyte*. All are expressed as Mean ± SEM, n=4 cells.

• Example 2 --- Frequency-dependent effects of dofetilide on the action potentials in rabbit ventricular myocytes



Figure 8. Reverse usedependent lengthening of action potential duration in isolated rabbit ventricular single myocytes. A: Action potentials (APs) in normal (4 mM) exteacellular  $K^+$  at various BCLs. B: APs in the presence of dofetilide ( Dof, 10 nM) at various BCLs. C: Comparison of APD-BCL relationships in the absence and presence of dofetilide. D: Comparison of changes of APD in the presence of dofetilide. APD: action potential duration; BCL: basic cycle length. Mean  $\pm$  SEM, n=8 from 4 rabbits.

# • Example 3 --- Effects of Compound A on the action potentials in rabbit atrial myocytes



Figure 9. Effects of Compound A on action potentials in rabbit atrail myocytes. A&B: Action potential traces in the presence and presence of 30 or 100  $\mu$ M Compound A. C: Compound A concentration-dependently shortened the action potential in rabbit atrial myocytes.